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A Additional Examples
In this section, we explore provide additional examples of how our theory relates to
recent experimental findings.
Framing effects. Framing effects, wherein different but logically equivalent de-
scriptions of a choice problem yield different choices, constitute a simple and evident
violation of rational decision-making. For example, consider a DM valuing bets over
the following statements:

p = “the S&P500 goes up tomorrow”, or
q = “the S&P500 goes up tomorrow and the 1 millionth prime number is

greater than 15,000,000.”

While p and q are in fact equivalent, as the additional criterion in q is tautological, it
is far from unreasonable for a DM to strictly prefer betting on the former. As humans
are not perfect reasoners, we often fail to observe logical equivalence, and thus do not
treat logically equivalent statements as such (Stalnaker, 1991; Lipman, 1999). This
is easily captured in our model by a t that maps p and q to.

While the effect above is likely due to the computational complexity of the state-
ments, framing effects abound for myriad other, often emotional, reasons. For ex-
ample, Tversky and Kahneman (1981) asked subjects consider the efficacy of a drug
differently depending on its description.

• 100 patients took the medicine, and 68 patients found it beneficial, or

• 100 patients took the medicine, and 32 patients saw no improvement.
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Again, such differentiation must stem from the failures of of the DM to identify
different descriptions of the same event.

Ambiguity Aversion. There is an urn with 100 balls, each of which can be white
or black, with unknown proportion. A single ball is drawn from the urn, and subjects
evaluate bets based on the language constructed from the following statements:

p = “The drawn ball is white.”
¬p = “The drawn ball is not white.”

p ∨ ¬p = “The drawn ball is white or it is not white”

A common pattern of choice is consistent with ℓ(t(p)) = ℓ(t(¬p)) < 1
2
ℓ(t(p ∨ ¬p)).

This pattern can be explained by an IOU in which there are states where neither p
nor its negation are true: for example W = {w1, w2, w3} and t : p → w1, t : ¬p → w2

and t : {p,¬p} → W .
Here the subject understands that p and ¬p are mutually exclusive, and further

understands that together they are always true. However, the subject is not able to
cleanly delineate the boundary between p and ¬p, and so, entertains states where
neither are considered true.

Notice also that this represents a case where a DM’s worldview becomes com-
pletely rational subsequent to obtaining some information. Conditioning on w she
considers only state w1, believing w and w ∨ ¬w to be true; conditioning on ¬w
she considers only state w3, believing ¬w and w ∨ ¬w to be true. Nonetheless, her
ex-ante preferences violate N and D.

Redundant Evidence. In a recent working paper, Garfagnini and Walker-Jones
(2023) endow subjects with a lottery that has a x ∈ {0, 1, 2, . . . , 100} percent chance
of paying $20 and a 1 − x percent chance of paying nothing. Subjects do not know
x but know that each value of x is equally likely. The experimenters elicit from the
subjects their probability-equivalent, that is, the minimum y ∈ [0, 100] such that they
are willing to trade the unknown (or compound) lottery for a y percent chance of $20.
This equivalent is elicited before and after providing the subjects with various pieces
of information about the initial, endowed, lottery of the form

pn = “x is greater than n”
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Within this rather simple environment, subjects displayed clear departures from
rational behavior. In particular, they often changed their valuation upon receiv-
ing redundant evidence. Specifically, they are initially told pn, reveal a probability-
equivalent y, and are subsequently told pn′ , with n′ ≤ n, and reveal a new probability-
equivalent y′ 6= y.

Here, clearly, the subjects’ behavior is inconsistent with an understanding that
pn implies pn′ . After conditioning on pn, the subjects should consider only states
where x ≥ n so that the additional revelation of pn′ provided no new information.
There are two (not necessarily mutually exclusive) explanations: the first is that in
the initial state-space, there are inconsistent states, where pn is true, but pn′ is false.
The second explanation is that subjects do not update by excluding states, but use
some other rationally-limited heuristic.

A further result from the authors suggests strongly that the latter is a contributing
factor: subjects often revise their probability-equivalents in the opposite direction as
expected. Over 60% of subjects with a baseline probability-equivalent y lowered
their response to y′ < y after being informed of p20 (or erred analogously in the
opposite direction). While properly disentangling static vs. dynamic rationality would
require a more intentional task, this evidence indicates that reducing uncertainty is
not necessarily accompanied by a higher standard of rational thinking.

What you see is all there is. The following is a slight adaption of Enke (2020):
Subjects are presented with bets regarding 6 independent, uniform draws from X =

{−3,−2,−1, 1, 2, 3}. Subjects observe the first draw and subsequently indicate whether
they believe the average to be positive or negative. Thereafter, they observe additional
signals by interacting with a computerized information source that (transparently)
shares all signals that “align” with their first stated belief (e.g., are positive if the
first belief is positive) but not all signals that “contradict” said belief. Subjects then
must again state their beliefs about the average. Whenever subjects’ first signal is
positive, their final stated beliefs tend to be upward biased, as if they were ignoring
the information contained in not observing a given signal (and conversely for initially
negative assessments).

Consider X+ = {1, 2, 3} and X− = {−1,−2,−3}, and without loss of generality
assume that the initial draw is x ∈ X+. Further, assume that a participant guesses
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that the average is above positive.
Consider the following statements

obsn = “n signals are observed”

neg5−n = “5− n signals are negative”

Then it seems that the participant’s behavior is being driven by a failure to perceive
the equivalence “obsn if and only if neg5−n” for each n ≤ 5.

To see how this failure of contingent thinking can be captured by an IOU, consider
the following state-space: W = {π : X → N |

∑
X π(x) = 5}, where each state is

identified with a function π such that π(x) counts the number of draws of x. Thus, t
maps the statement, for x ∈ X and m ≤ 5,

dx,m = “there were m draws of x”

to the event {π ∈ W | π(x) = m}. Now consider the statement, for x ∈ X+ and
m ≤ 5,

ox,m = “there were m observations of x”

For a perfectly rational subject this should map to the event {π ∈ W | π(x) = m};
however, a participant who does not intuit that the missing signals must have been
negative will understand this statement as the event t : ox,m 7→ {π ∈ W | π(x) ≥ m}.

So long as the participants are otherwise rational, they will understand the state-
ment obsn as mapping to the union of all different ways they could have observed
n signals, and likewise the statement neg5−n as the union of the different ways of
having drawn 5− n negative draws. That is:

t(obsn) =
∪{ ∩

x∈X+

t(ox,mx) |
∑
x∈X+

mx = n
}

and

t(neg5−n) =
∪{ ∩

x∈X−

t(dx,mx) |
∑
x∈X−

mx = 5− n
}

It is straightforward to see that for the rational subjects, these two sets coincide,
whereas for subjects with the flawed t given above, t(neg5−n) ⊊ t(obsn).

Support Theory. Tversky and Koehler (1994) collect many examples of unpacking
wherein DMs estimate the probability of an implicit disjunction (e.g., death from a
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natural cause) to be less than the sum of its mutually exclusive components (e.g.,
death from heart disease, cancer, or other natural causes). In other words, subjects
assessed the collective probability of a set of specific statements as more likely than
a statement comprising their disjunction.

This can be captured by a subject who correctly understands that each component
statement is contained in the more general case, but fails to properly account for the
mutual exclusivity of statements. Consider the following:

h = “The primary cause of death is heart disease.”

c = “The primary cause of death is cancer.”

h ∧ c = “The primary cause of death is heart disease and the primary cause of
death is cancer”

n = “The primary cause of death was natural.”

and assume that the subject understands that h∧c is impossible, so that t(h∧c) = ∅,
and that both h and c imply n: t(h) ⊆ t(n) and t(c) ⊆ t(n).

Now, if t distributes over conjunctions, it follows that t(h) ∩ t(c) = ∅, and so
it must be that ℓ(t(h)) + ℓ(t(c)) ≤ ℓ(t(n)). However, consider (W, t) with W =

{w1, w2, w3} and t : h 7→ {w1, w2},c 7→ {w2, w3}, h ∧ c 7→ ∅ and n 7→ W .
Here, t is not ∧-distributive, so that although the subject directly recognizes that

h ∧ c, she still implicitly considers states where neither statement is ruled out.

B Axiomatic foundation of SIDEU
Here we provide axioms on a preference relation (also denoted ≽) over syntactic acts.
For simplicity, we assume that the image of each syntactic act is finite. We will
consider notation for some special acts: For Λ ⊆ Φ ⊂ L and x ∈ R+, let xΛ

Φ denote
the acts that maps Λ to x and Φ \ Λ to 0. That is, the act whose domain is Φ,
and which pays x if and only if Λ. Further, identify xΦ with the syntactic bet of x
on Φ. Let dom(f) ∈ L denote the domain of f . For two acts f and g such that
dom(f) = dom(g), let αf + βg, for α, β ∈ R+, denote the point-wise mixture of f
and g.

In what follows, it will be helpful to consider properties of the strict component
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of preference: Given ≽, for any pair of acts f and g write f ∼̇ g if {h | h � f} =

{h | h � g}, and f

∼̇

g if {h | f � h} = {h | g � h}. Finally, write f ≈ g if f ∼̇ g

and f

∼̇

g: that is, if f and g satisfy the exactly same �-relations. Note that f ≈ g

is not the same as f ∼ g; this equivalence does however follow if ≽ is complete and
transitive.

The first axiom is the requirement that the strict component of the preference is
an interval order.

A1—Strict Interval Order. � is continuous irreflexive and transitive and has
the interval property: if f � g then for all x ∈ R+ and Φ ∈ K either f � xΦ or
xΦ � g.

The next axiom, Interpretability, states that when we restrict the preference to
syntactic bets, this restrictions satisfies the axioms from Section ??.

A2—Interpretability. ≽, restricted to syntactic bets, is an articulate IDEU pref-
erence.

Next, we link the preferences over more complex acts to simple bets by assuming
the existence of some (upper) certainty equivalent.

A3—Bet Equivalence. For all f , and nonnull Φ, there exists a x ∈ R+ such that
f ∼̇ xΦ.

The next axiom extends the IDEU representation to more complex acts. Even
when the DM aggregates in a nonlinear way across states (i.e., the likelihood assess-
ment is a non probability ℓ), aggregation of co-monotone acts will be linear.

A4—Co-Monotone Additivity. For Φ, let f, g : Φ → R be co-monotone. Then

• Let g

∼̇

yΦ. Then f � xΦ iff f + g � (x+ y)Φ.

• Let yΦ ∼̇ g. Then xΦ � f iff (x+ y)Φ � f + g.

The axioms dictates how a DM’s valuation (i.e., the her upper and lower bound
valuations as given by ∼̇ and ∼̇) respond to expanding the set of contingencies on
which an act pays a positive payoff.

A5—Expansion Consistency. Let Φ,Γ ⊂ Λ ∈ K be disjoint and Ψ ∈ K be
nonnull. Then:
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(upper) Let xΓ
Φ∪Γ

∼̇

yΨ. Then zΨ � xΦ
Λ iff (z + y)Ψ � xΦ∪Γ

Λ .

(lower) Let xΓ
Λ\Φ

∼̇

yΨ. Then xΦ
Λ � zΨ iff xΦ∪Γ

Λ � (z + y)Ψ.

When moving from betting on Φ to betting on Φ ∪ Γ, the DM’s upper-bound
valuation increases directly by the value of a bet on Γ. However, her lower-bound
valuation can increase by more, since by changing the payoff contingent on Γ from 0
to 1, the act also becomes less ambiguous—if the DM perceived that Φ and Γ might
overlap, then the bet on Φ alone is not well defined in the DM’s mind, but additionally
betting on Γ can alleviate this concern and thereby increase the value of the act by
more than the direct value of a bet on Γ.

Theorem 1. A relation ≽ satisfies A1–A5 if and only if it is a sparse IDEU pref-
erence.

Proof. We consider only the nontrivial case wherein L is nonnull; retaining our abuse
of notation, associate each x ∈ R+ with the act xL. For the remainder of this section,
let (W, t, ℓ) denote the representation of ≽ required by A2.

Lemma 2. Let ≽ satisfy A1 and A2. Let Φ be nonnull and let f ∼̇
xΦ and yΦ ∼̇ g.

Then, x > y if and only if f � g.

Proof. Set z = 1
2
x+ 1

2
y. If x > y, then, since xΦ � zΦ also f � zΦ. Likewise, zΦ � g,

so by transitivity, f � g. If y ≥ x, then zΦ 6� g and f 6� zΦ. Therefore, by the
contrapositive of the interval property, f 6� g. ■

Lemma 3. Let ≽ satisfy A1, A2, A3 and A4. Then, for Φ ∈ K f � xΦ if and only
if αf � αxΦ for α > 0 and, likewise: xΦ � f if and only if αxΦ � αf for α > 0.

Proof. Let 1
2
f ∼̇ y and f ∼̇ x. These are guaranteed to exist by A3. By A4, we have

z � f iff z − y � 1
2
f . Hence y = 1

2
x. Repeating as necessary, we have 1

2n
f ∼̇ 1

2n
x.

Now, the set of finite sums of (possibly repeating) elements of the set { 1
2n
}n∈N is dense

in R+, so additivity and continuity seal the deal. ■

Lemma 4. Set some Φ ⊆ Λ ∈ K. If ≽ satisfies A2 and A5(lower) then

1ΦΛ

∼̇

ℓ(t(Λ))− ℓ(t(Λ \ Φ)). (1)
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If in addition, ≽ satisfies A5(upper) then

ℓ(t(Φ)) ∼̇ 1ΦΛ (2)

Proof. Let ≽ satisfy A5(lower). Set Γ to denote Λ\Φ. Then, by the representation
for bets,

1ΓΛ\Φ = 1Γ

∼̇

ℓ(t(Γ)) and 1Φ∪Γ
Λ = 1Λ

∼̇

ℓ(t(Λ)).

So by A5(lower) we have 1ΦΛ

∼̇

ℓ(t(Λ))− ℓ(t(Γ)) = ℓ(t(Λ))− ℓ(t(Λ \ Φ)).
Now assume ≽ also satisfies A5(upper). Again, by definition

ℓ(t(Λ)) ∼̇ 1Λ

Applying the just established result yields 1ΓΛ

∼̇

ℓ(t(Λ))− ℓ(t(Φ)). So by A5(upper)
we have

ℓ(t(Λ))− ℓ(t(Λ))− ℓ(t(Φ)) = ℓ(t(Φ)) ∼̇ 1ΦΛ. ■

Define f = w 7→ min{f(φ) | w ∈ t(φ)} and f = w 7→ max{f(φ) | w ∈ t(φ)}.
Clearly, f ,f ∈ {{f}} and ∫

fdℓ ≤
∫

fdℓ ≤
∫

fdℓ

for any other f ∈ {{f}}.

Lemma 5. Let f, g : Λ → R+ be co-monotone, set h = αf + βg. Then h = αf + βg

and h = αf + βg.

Proof. This is immediate from the fact that argmint−1(w) f(φ)∩argmint−1(w) g(φ) 6= ∅,

by co-monotonicity, so for each w there exists a Φ ∈ t−1(w) such that αf(Φ)+βg(Φ) =

αf(w)+βg(w), which is clearly less than h(Ψ) for any other Ψ ∈ t−1(w). By analogy
we have this also for h. ■

For 1ΦΛ, we have that

1Φ
Λ : w →

1 if w ∈ t(Φ) \ t(Λ \ Φ),

0 otherwise,
1Φ
Λ : w →

1 if w ∈ t(Φ),

0 otherwise.
(3)
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Let ≽ satisfy A1–A5. Applying Lemma 4 to (3) we have:∫
1Φ
Λ dℓ ∼̇ 1ΦΛ and 1ΦΛ

∼̇

∫
1Φ
Λ dℓ

Now, for any f with Λ = dom(f), we can find {Γn}mn=1 with Γn+1 ⊆ Γn ⊆ Λ such
that

f =
m∑

n=1

αn1
Γn
Λ

for αn ∈ R+. By their nestedness these bets are pairwise co-monotone, we have

f =
m∑

n=1

αn1
Γn
Λ

∼̇m∑
n=1

αn

∫
1Γn
Λ dℓ (by A4 and Lemma 3)

=

∫ m∑
n=1

αn1
Γn
Λ dℓ (by linearity of Choquet integral)

=

∫
f dℓ (by Lemma 5)

A repetition of the argument shows also that∫
f dℓ ∼̇ f.

Hence, f � g if and only if (by Lemma 2)
∫
f dℓ >

∫
g dℓ, which given the

construction of f and g, implies exactly the desired representation. ■

B.1 Maxmin IDEU

Thought of as a criteria on strict preference (i.e., taking � as the observable), sparse
IDEU preferences are often far from complete. In other words, the representation
(sideu) is agnostic about how to compare acts when different translations of the acts
can be ranked in different ways (i.e., when the interval of constant equivalent bets
overlap).

The next criteria we consider is MaxMin IDEU, which can be thought of as the
cautious completion of this order. Whenever two acts are not strictly ranked by sparse
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IDEU, MaxMin selects the act with the higher worst-case consistent translation. For-
mally:

Definition 1 (MaxMin preferences). Call ≽ a Maxmin preference if there exits some
interpretation of uncertainty (W, t, µ), with additive µ, such that for all syntactic acts
f and g,

f ≽ g ⇔ min
f∈{{f}}

∫
f dℓ ≥ min

g∈{{g}}

∫
g dℓ (mm-ideu)

It is rather immediate that if (sideu) ranks two bets then (mm-ideu) will preserve
this ranking. However, unlike sparse IDEU, the later is a true decision criteria as it
recounts a complete preference.

Theorem 6. A relation ≽ is complete and transitive and satisfies A2–A4 and A5-
(lower) if and only if it is a MaxMin IDEU preference.

As is apparent by the overlap in their axiomatization, the sparse and maxmin
choice criteria are closely related. Indeed, given the same IOU, these two preferences
will agree on any strict preference indicated by sparse-IDEU. However, to extend the
choice procedure to all acts, as in MaxMin IDEU, clearly requires the preference be
complete and transitive. Since a complete relation satisfies A1, we can drop this
dictate from conditions for MaxMin IDEU.

Proof. Let ≽ be complete and transitive and satisfy A2–A4 and A5-(lower).
First, we claim that if f ∼̇

g then f ∼ g. Since the asymmetric component of a
relation is necessarily irreflexive, we have f, g /∈ {h | f � h} = {h | g � h} (where the
equality is the definition of ∼̇) or that f 6� g and g 6� f so by completeness f ∼ g.

Following the proof of Theorem 1, we have that f

∼̇∫
f dℓ. which by the above

observation implies f ∼
∫
f dℓ. This completes the proof as: f ≽ g if and only if∫

f dℓ ≽
∫
g dℓ if and only if

∫
f dℓ ≥

∫
g dℓ, which given the construction of f

implies exactly the desired representation. ■
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