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Abstract

In this supplemental material to Piermont and Teper (2019) we pro-

vide a decision theoretic framework and axiomatization for an agent

who is facing the classic exploration and exploitation tradeoff. We

show that only the margin of the decision maker’s belief can be iden-

tified from her ranking of the different strategies available in a bandit

problem.

1 The Decision Theoretic Framework

A DM is tasked with ranking sequential and contingent choice objects: the action taken

by the agent at any stage depends on the outcomes of previous actions. Formally, our

primitive is a preference over plans of action (PoAs). Each action, a, is associated

with a set of consumption prizes the action might yield, Sa. Then, a PoA is recursively

defined as a lottery over pairs pa, fq, where a is an action and f is a mapping that

specifies the continuation PoA for each possible outcome in Sa. Theorem 2 shows that

the construction of PoAs is well defined. So, a PoA specifies an action to be taken each

period that can depend on the outcome of all previously taken actions. See Figures

1 and 2, where fpxq, fpyq, fpzq are themselves PoAs. Each node in a PoA can be

identified by a history of action-outcome realizations preceding it.

The actions in our model is in direct analogy to the arms of bandit problem (or

actions in a repeated game). PoAs correspond to the set of all (possibly mixed) strate-

gies in these environments. Note, however, the DM’s perception of which outcome in
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Sa will result form taking action a is not specified. This is subjective and should be

identified from the DM’s preferences over PoAs. As discussed above, the main question

is to what extent these beliefs can be identified and what are the economic implications

of belief identification in this framework?
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Figure 1: An action, a, and its support,
Sa.
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Figure 2: A degenerate PoA, pa, fq.

Theorem 3 axiomatizes preferences over PoAs of a DM who at each history enter-

tains a belief regarding the outcome of future actions. That is, at each history h and for

every action a, the DM entertains a belief µh,a over the possible outcomes Sa; µh,apxq

is the DM’s subjective probability that action a will yield outcome x, contingent on

having observed the history h. Given this family of beliefs, the DM acts as a subjective

discounted expected utility maximizer, valuing a PoA p, after observing h, according

to a Subjective Expected Experimentation (SEE ) representation:

Uhppq “ Ep
“

Eµh,a rupxq ` δUh1pfpxqqs
‰

, (SEE)

where h1 is the updated history (following h) when action a is taken and x is real-

ized. All the parameters of the model—the consumption utility over outcomes, u,

the discount factor, δ, and the history dependent subjective beliefs, tµh,auhPH,aPA—are

identified uniquely.

The identification accompanying the representation concerns the marginal beliefs,

tµh,auhPH,aPA, and not a joint stochastic process over all actions, as is the starting

point in the standard approach to bandit problems. In the main text, we explore

the statistical information encoded in these marginal beliefs, and the extent to which

a joint distribution can be identified. It is immediate that each behavioral strategy

available to the agent in a bandit problem defines a unique plan of action, and vice

versa . Moreover, simple algebra shows that the classical (time-separable discounted

expected utility) valuation of behavioral strategies (see Eq. (1)) is the restriction of
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(SEE) to such plans.

1.1 Constructing Plans of Action.

Let X be a finite set of outcomes, endowed with a metric dX . Outcomes are consump-

tion prizes. For any metric space, M , let KpMq denote the set non-empty compact

subsets of M , endowed with the Hausdorff metric. Likewise, for any metric space M ,

denote ∆BpMq as the set of Borel probability distributions over M , endowed with the

weak*-topology, and ∆pMq the subset of distributions with denumerable support.

Let A be a compact and metrizable set of actions. Each action, a, is associated

with a set of outcomes, Sa P KpXq, which is called the support of the action. We

assume the map a ÞÑ Sa is continuous and surjective.1 For any metric space M , let

AbM “ tpa, fq|a P A, f : Sa ÑMu “ tpa, tpxi,miquiPIq P AˆKpX ˆMq|
Ť

iPItxiu “

Sa and xi ‰ xj, @i ‰ j P Iqu, endowed with the subspace topology inherited from the

product topology. By the continuity of a ÞÑ Sa we know that the relevant subspace is

closed and hence the topology on A bM is compact whenever M is. We can think

of f as the assignment into M for each outcome in the support of action a. For any

f : X ÑM we will abuse notation and write pa, fq rather than pa, f |Saq.

We will begin by constructing a more general notion of plans.2 To begin, let Q0 “

R0 “ ∆BpAq and, for define recursively for each n ě 1

Qn “ ∆B
pAˆKpX ˆQn´1qq and,

Rn “ trn P Qn|rnpAbRn´1q “ 1u

Define Q˚ “
ś

ně0Qn and R˚ “
ś

ně0Rn.

We restrict ourselves to the set of consistent elements of R˚: those elements such

that, the pn´ 1q-period plan implied by the n-period plan is the same as the pn´ 1q-

period plan. Let G1 : A ˆ KpX ˆ Q0q Ñ A as the mapping pa, tx, q0uq ÞÑ a. Let

F1 : Q1 Ñ Q0 as the mapping F1 : q1 ÞÑ
`

E ÞÑ q1pG
´1
1 pEqq

˘

, for any E P BpAq.
Therefore, for any E P BpAq, F1pp1qpEq is the probability of event E in period 0 as

1The requirement that for all x there exists an action that yields x with certainty (i.e., Sa “ txu)
facilitates the identification of utilities over outcomes. Although the DM has preferences over such
actions, this does not mean they are available in an arbitrary exploration problem, just as degenerate
lotteries are part of the primitive choice set in von-Neumann-Morgenstern, but are not feasible in
every decision problem.

2This methodology serves two purposes. First, the more general approach allows us to use standard
techniques for the construction of infinite horizon choice objects. Second, generalized plans may be
of direct interest in future work, when, for example, denumerable support is not desirable.
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implied by p1; F1pp1q is the distribution over period 0 actions implied by p1. From here

we can recursively define Gn : AˆKpX ˆQnq Ñ AˆKpX ˆQn´1q as:

Gn : pa, tx, qn´1uq ÞÑ pa, tx, Fn´1pq0quqq

and Fn : Qn Ñ Qn´1 as:

Fn : qn ÞÑ
`

E ÞÑ qnpG
´1
n pEqq

˘

for any E in ∆BpAˆKpX ˆQn´1qq. A consistent generalized plan is one such that

Fnpqnq “ qn´1, (1)

for all n. Let Q denote the restriction of Q˚ that satisfies (1) and R “ QXR˚.

Proposition 1. There exists a homeomorphism, λ : RÑ ∆BpAbRqq such that

margAˆKpXˆRn´1q
pλprqq “ projnr. (2)

Proof. In Section 1.6 �

Finally, we want to consider plans whose support is denumerable. It is easy enough

to set P0 “ ∆pAq Ă R0, and define recursively Pn “ ∆pA b Pn´1q Ă Rn. Of course,

there is a potential pitfall still lurking: for a given
ś

ně0 Pn, although each pn is a

denumerable lottery, the associated element, λppq might live in ∆BpAbP q rather than

∆pAb P q. Indeed, we need also to restrict our attention to the set of plans that have

countable support not just for each finite level, but also “in the limit,” and whose

implied continuation plans are also well behaved in such a manner. Fortunately, this

can be done.

Theorem 2. There exists maximal set P Ă R such that for each p P P , projnp P Pn,

and λ is a homeomorphism between P and ∆pAb P q.

Proof. In Section 1.6 �

The set P is our primitive. As a final notational comment, we would like to consider

a further specification of objective plans, denoted by Σ Ă P . Σ denotes the set of plans

which contain no subjective uncertainty; in every period, every possible action yields
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some outcome with certainty. Recall, for each x P X there is an associated action, ax

such that Sax “ txu. Associate this set of actions with X. Then Σ0 “ ∆pXq and,

recursively, Σn “ ∆pXˆΣn´1q. Finally Σ “ P
Şś

ně0 Σn. That is, these plans specify

only actions with deterministic outcomes at every stage. It is straightforward to show

λ takes Σ to ∆pX ˆ Σq.

Histories. PoAs are infinite trees; each node, therefore, is itself the root of a new

PoA—a distribution over action-continuation pairs. Each action-continuation, pa, fq, in

the support of a node contains branches to new nodes (PoAs). The branches emanating

from an action coincide with the outcomes in the support of that action, x P Sa. The

node that follows x is the PoA specified by fpxq. Each node, therefore, is reached

after a unique history: the history specifies the realization of the distribution of each

pervious node, and outcome of the action realized. Thus, for a given PoA, p, each

history of length n is an element of
śn

t“1 P ˆ rAb P s ˆX such that p1 “ p and

pat, f tq P supppptq

xt P Sat

pt`1 “ f tpxtq

Define the set of all histories of length n for p asHpp, nq and the set of all finite histories

as Hppq. Let Hpnq “
Ť

pPP Hpp, nq and, H “
Ť

nPNHpnq. For each h P Hpp, nq, h
corresponds to the node (PoA) defined by fnpxnq. Lastly, for any p, q P P and h P Hppq
define p´hq as the (unique!) element of P that coincides with p everywhere except after

h in which case fnpxnq is replaced by q. Note that the n period plan implied p and

p´hq are the same. For any p, q P P and n P N, let p´nq ”
Ť

hPHpp,nq p´hq.

For h “ pp1, a1, f 1, x1 . . . pn, an, fn, xnq and ĥ “ pp̂1, â1, f̂ 1, x̂1 . . . p̂n, ân, f̂n, x̂nq both

in Hpnq, we say that h and h1 are A-equivalent, denoted by h
A
„ h1 if ai “ âi and

xi “ x̂i for i ď n. That is, two histories of length n are A-equivalent, whenever they

correspond to the same sequence of action-realization pairs, ignoring the objective

randomization stage of each period and the continuation assignment to outcomes that

did not occur. It will turn out, we are only interested in the A-equivalence classes

of histories. Technically, this is the consequence of the linearity of preference and

indifference to the resolution of uncertainty (as shown in Lemma 3); conceptually,

this is because all uncertainty in the model regards the realization of actions, and so,

observing objective lotteries has no informational benefit.
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1.2 The Axioms

The primitive in our model is a preference relation ěĎ P ˆ P over all PoAs. When

specific PoA and history are fixed, the preferences induce history dependent preferences

as follows: for any p P P , and h P Hppq define ěhĎ P ˆ P by

q ěh r ðñ p´hq ě p´hr.

The following axioms will be employed over all history induced preferences.3 A history

is null if ěh is a trivial relation. This first four axioms are variants on the standard fare

for discounted expected utility. They guarantee the expected utility structure, non-

triviality, stationarity and separability (regarding objects over which learning cannot

take place), respectively.

A1. (vNM). The binary relation, ěh satisfies the expected utility axioms. That is:

weak order, continuity, and independence.

We require a stronger non-triviality condition that is standard, because of the sub-

jective nature of the dynamic problem. We need to ensure the DM believes some

outcome will obtain. Therefore, not all histories following a given action can be null.

A2. (NT). For any non-null h, and any pa, fq, not all h1 P hˆHppa, fq, nq are null.

Of course, the nature of the problem at hand precludes stationarity and separability

in full generality. Since the objective is to let the DM’s beliefs depend on prior outcomes

explicitly, her preferences will as well. However, the DM’s beliefs do not influence her

assessment of objective plans (i.e., elements of Σ), and so it is over this domain that

stationarity and separability are retained. This means, the DM’s preferences in utility

terms are stationary and separable, but we still allow the conversion between actions

and utils to depend on her beliefs which change responsively.

A3. (SST). For all non-null h P H, and σ, σ1 P Σ,

σ ě σ1 ðñ σ ěh σ
1.

3It is via the use of this construction that our appeal to denumerably supported lotteries provides
tractability. If we were to employ lotteries with uncountable support, then histories would, in general,
be zero probability events; under the expected utility hypothesis, ěh would be null for all h P H. This
could be remedied by appealing to histories as events in H, measurable with respect to the filtration
induced by previous resolutions of lottery-action-outcome tuples. We believe that this imposes a
unnecessary notational burden.
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A4. (SEP). For all x, x1 P X, ρ, ρ1 P Σ and h P H,

`1

2
px, ρq `

1

2
px1, ρ1q

˘

„h
`1

2
px, ρ1q `

1

2
px1, ρq

˘

.

Because of the two-stage nature of the resolution of uncertainty each period (first,

the resolution of lottery over A b P , and then the resolution of the action over X),

we need an additional separability constraint. From the point of view of period n, and

when considering the continuation problem beginning in period n` 1, the DM should

not care if uncertainty is resolved in period n (when the action-continuation pair is

realized), or in period n ` 1. That is, we also assume the DM is indifferent to the

timing of objective lotteries given a fixed action.

A5. (IT). For all a P A, h P H, α P p0, 1q, and pa, fq, pa, gq P P̂ ,

αpa, fq ` p1´ αqpa, gq „h pa, αf ` p1´ αqgq,

where mixtures of f and g are taken point-wise.

Thus far the axioms introduced are somewhat standard. However, in our particular

framework these assumptions do not guarantee that the value of the action is in any

way related with its realization of consumption alternatives. This is because, unlike

other environments, the set of outcomes, X, plays a dual role in exploration models:

representing both the space of outcomes and the state space regarding future actions.

The realization of an outcome x delivers utility according to both of these roles, and,

to ensure consistency between them requires two steps. First, construct a subjective

distribution over each action by treating X as a state space. This will be done by

looking at the ranking of continuation mappings for each action (i.e., pa, fq compared

to pa, gq). Interpreting X as the periodic state space, these continuation mappings

are analogous to “acts” in the standard subjective expected utility paradigm–and so,

standard techniques allow for the identification of such a subjective belief. Second, we

need to ensure that the value assigned to arbitrary PoAs is the expectation according

to these beliefs. Towards this, the following notation is introduced.

Definition. For any function f : X Ñ P, define p.f P P as p.f rpa, gqs “ prtpb, hq|b “

aus if g “ f , and p.f rpa, gqs “ 0 if g ‰ f .

Take note, because we are dealing with distributions of denumerable support, we

have no measurability concerns. The plan of action p.f has the same distribution over
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Figure 3: A PoA, p, defined by ppa, gq “
α, ppa, g1q “ β and ppb, g2q “ γ “ 1´α´
β.

p

pa, fq

pb, fq

α` β

γ

x

y

fpxq

fpyq

z fpzq

Figure 4: The PoA, p.f where f : X Ñ

P , and p is defined in figure 3. Notice,
p.fpa, fq “ ppa, gq ` ppa, g1q “ α ` β.

actions in the first period, but the continuation plan is unambiguously assigned by f ,

as shown in Figures 3 and 4. If the original plan is in A b P , then the dot operation

is simply a switch of the continuation mapping: pa, gq.f “ pa, fq. This operation is

introduced because it allows us to isolate the subjective distribution of the first period’s

action.

Definition. p, q P P are h-proportional if for all f, g : X Ñ Σ.

p.f ěh p.g ðñ q.f ěh q.g

Since the images of f and g are in Σ, there is no informational effect from observing

the outcome of p. Hence, f and g can be thought of as objective assignments into con-

tinuation utilities. The ranking ‘p.f ě p.g’ is really a ranking over f and g as functions

from X Ñ R. Thus, h-proportionality states that the DM’s subjective uncertainty

regarding X is the same when faced with p or with q.4

A6. (PRP). For all p, q P P , and f : X Ñ Σ if p and q are h-proportional then

p.f „h q.f .

The outcomes of an action represent not only the uncertainty regarding contin-

uation, but also the utility outcome for the current period. So, when p and q are

h-proportional, and thus induce the same uncertainty regarding X, the DM’s uncer-

tainty about her current period utility is the same across the plans. Therefore, if we

4To see this, note that the relation R on RXˆRX defined by fRg if and only if p.f ě p.g is a prefer-
ence relation over acts that satisfies the Anscombe and Aumann (1963) axioms, and therefore encodes
the DM’s subjective likelihood of each E Ă X. From a functional standpoint, h-proportionality states
the subjective distribution over X induced by p is the same as that induced by q.
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replace the continuation problems with objectively equivalent plans, the DM should be

indifferent between p and q.

PRP states that, when future discounted expected utilities have been identified,

the entire exploration/exploitation tradeoff collapses to a simple 2-stage intertemporal

tradeoff. Of course, this requires the identification of continuation values, and therefore

a full understanding of future utilities via the beliefs. In the most general model, there

need not be any connection between today’s beliefs and tomorrow’s, hence the only

behavior associated with exploration models is that which can be derived from the

recursive structure. This need not be viewed as a negative result. Instead, we have

shown that sharp behavioral markers of exploration behavior must arise from conditions

on the evolution of beliefs. An example for that is provided in Section 1.4 when we

discuss the behavioral restrictions of exchangeability in the current setup.

1.3 A Representation Result and Belief Elicitation

The following is our general axiomatization result. It states that the properties above

characterize a DM who, when facing a PoA, calculates the subjective expected utility

according to a collection of history dependent beliefs over action-outcome pairs, and

among different PoAs contemplates the benefits of consumption versus learning.

Theorem 3 (Subjective Expected Experimentation Representation). ěh satisfies vNM,

NT, SST, SEP, IT and PRP if and only if there exists a utility index u : X Ñ R, a

discount factor δ P p0, 1q, and a family of beliefs tµh,a P ∆pSAquhPH,aPA such that

Uhppq “ Ep
“

Eµh,a
“

upxq ` δUh1pa,xqpfpxqq
‰‰

, (SEE)

jointly represents těhuhPH, where h1pa, xq “ ph, p, pa, fq, xq. Moreover, u is cardinally

unique, δ is unique, the family of beliefs is unique, and µh,a “ µh1,a whenever h
A
„ h1.

Proof. In Section 1.7. �

The theorem states that we can (uniquely) elicit the beliefs, following every history,

over the outcomes of each action separately. We will henceforth refer to such beliefs as

an SEE belief structure. The axioms do not impose any restrictions on the dynamics

of such beliefs. More importantly, the theorem shows that, when ranking the different

strategies in a bandit problem, the decision maker does not reveal her beliefs over the

joint realizations of the different actions.
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1.4 AA-SYM as a Behavioral Restriction

In the main text we introduced the notion of across-arm symmetry or AA-SYM, which

stated that the DM’s beliefs were invariant under joint permutations of the order of ac-

tions and observations. AA-SYM is a necessary and sufficient condition for consistency

with an exchangeable process. In this section we introduce the axiomatic counterpart

of AA-SYM, and so we can identify Bayesianism in exploration environments directly

from preferences over the strategies.

Definition. Let π be an n-permutation and p, q P P . We say that q is π-permutation

of p if for all h P Hpp, nq, h1 P Hpq, nq, projAnh “ π
`

projAnh
1
˘

.

If p admits any π-permutations it must be that the first n actions are assigned

unambiguously (i.e., it does not depend on the realization of prior actions nor the

objective randomization).

A7. (AA-SYM). Let π be an n-permutation and p, p1 P P with p1 a π-permutation

of p. Then, for all a P A, τ, σ, σ1 P Σ, and h P Hpp, nq, h1 P Hpp1, nq, if h is a

permutation of h1 then

p´nτ ě pp´nσq´hσ
1
ðñ p´nτ ě pp´nσq´h1σ

1.

After n periods the plan p´nτ provides τ with certainty, while the plan pp´nσq´hσ
1

provides σ unless the history h occurs. Hence, the DM’s preference between the plans

depends on their ex-ante subjective assessment of how likely h is to occur. Similarly

to the logic behind h-proportionality, AA-SYM states that the DM’s assesses h to be

exactly as probable as h1. In other words, the DM’s likelihood of outcome realizations

is invariant to the order in which the actions are taken. The intuition behind the next

result is correspondingly straightforward.

Proposition 4 (Correlated Arms, Exchangeable Process). Let ě admit an SEE rep-

resentation with the associated observable processes tζTuTPT . Then, the following are

equivalent:

1. ěh satisfies AA-SYM;

2. tζTuTPT satisfies AA-SYM;

3. tζTuTPT is consistent with an exchangeable process; and
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4. tζTuTPT is consistent with a (unique) strongly exchangeable process.

Proof. The proof that condition 1 is equivalent to condition 2 is provided Section

1.7. Conditions 2, 3, and 4 are equivalent due to Theorem 2 in Piermont and Teper

(2019). �

The proposition implies that strong-exchangeability carries no additional restric-

tions, beyond those of exchangeability, on agents’ preferences over the different strate-

gies in bandit problems, and in particular on their optimal strategies.

1.5 Further Discussion

Related Literature. Within decision theory, the literature on learning broadly con-

siders how a DM incorporates new information, generally via notions of Bayesianism

and Exchangeability, and often in the domain of uncertainty: see Epstein and Le Bre-

ton (1993); Epstein and Seo (2010); Klibanoff et al. (2013); Lehrer and Teper (2019).

Recently, there has been an interest in subjective learning, or, the identification of the

set of possible “signals” that the DM believes she might observe. At it’s most simple,

this is the elicitation of the set of potential tastes (often referred to as subjective states)

the decision maker anticipates, accomplished by examining the DM’s preference over

menus of choice objects: see Kreps (1979); Dekel et al. (2001). By also incorporating

consumption goods that contract on an objective state space, the modeler can inter-

pret the DM’s preference for flexibility as directly stemming from her anticipation of

acquiring information regarding the likelihood of states, as in Dillenberger et al. (2014);

Krishna and Sadowski (2014).

There is also a small but highly relevant literature working on the identification

of responsive learning. Hyogo (2007) considers a two-period model, with an objective

state space, in which the DM ranks action-menu pairs. The action is taken in the first

period and provides information regarding the likelihood of states, after the revelation

of which, the DM choose a state-contingent act from the menu. The identification

of interest is the DM’s subjective interpretation of actions as signals. Similarly, ?

entertains a similar model without the need for an objective state-space, and in which

the consumption of a single object in the first period plays the role of a fully informative

action. Cooke, therefore, identifies both the state-space and the corresponding signal

structure. Piermont et al. (2016) consider a recursive and infinite horizon version of

Kreps’ model, where the DM deterministically learns about her preference regarding

objects she has previously consumed. Dillenberger et al. (2017) consider a different
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infinite horizon model where the DM makes separate choices in each period regarding

her information structure and current period consumption. It is worth pointing out,

all of these models, unlike the this paper, capitalize on the “preference for flexibility”

paradigm to characterize learning. We are able to identify subjective learning without

appealing to the menu structure because of the purely responsive aspect of our model.

In other words, flexibility is “built in” to our setup, as a different action can be taken

after every possible realization of the signal (action).

Subjective Learning with Endogenous and Exogenous Information. As

witnessed the literature covered above, there seems to be a divide in the literature re-

garding subjective learning. In one camp, are models that elicit the DM’s perception of

exogenous flows of information (as a canonical example, take Dillenberger et al. (2014)),

and in the other are models that assume information is acquired only via actions taken

by the DM (where this paper lies). Realistically, neither of these information structures

capture the full gamut of information transmission in economic environments.

Consider the following example within the setup of the current paper. A firm is

choosing between two projects (actions), a and b. Assume that each project has a

high-type and a low type. The firm believes (after observing h) the probability that

each project is the high-type is µh,a and µh,b, respectively. By experimenting between

a and b the firm’s beliefs and preferences will evolve.

But, what happens if the firm anticipates the release of a comprehensive report

regarding project a just before period 1? This report will declare project a high quality

with probability αh ą 1
2

if the projects true type is high and with probability αl ă 1
2

if it is low. Hence, the report is an informative signal. Now, if the firms belief after

observing h in period 0 is given by rµh,a, µh,bs then, according to Bayes rule, the firms

belief regarding project a being the high-type, at the beginning of period 1 will be

µ`h,a “
αh¨µh,a

αh¨µh,a`αlp1´µh,aq
, if the report is positive, and µ´h,a “

p1´αhq¨µh,a
p1´αhq¨µh,a`p1´αlq¨p1´µh,aq

if

the report is negative.

Unfortunately, however, the ex-ante elicitation of preferences in our domain cannot

capture the anticipation of information. The firm is ranking PoAs according to its

aggregated belief from the ex-ante perspective, and thus, so as to maximize its expected

belief:

`

αhµh,a ` α
l
p1´ µh,aq

˘

µ`h,a `
`

p1´ αhqµh,a ` p1´ α
l
qp1´ µh,aq

˘

µ´h,a “ µh,a.
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Because of the Bayesian structure, the DM’s beliefs must form a martingale, so her

expectation of her anticipated beliefs are exactly her ex-ante beliefs. This fact, coupled

with the linearity of expected utility, imply that the DM’s ex-ante preference over PoAs

is unaffected by her anticipation of exogenous information arrival.

All hope is not lost, however, of fully characterizing the DM’s subjective information

structure. The approach of Dillenberger et al. is orthogonal to our’s, leading us to

conjecture that the two models can co-exist and impart a clean separation between

exogenous and endogenous information flows. Going back to the example, imagine

there are two PoAs, p and q such that p is preferred to q under beliefs µ`h , and q to p

under µ´h . The DM would therefore strictly desire flexibility after period 0, even after

she is able to condition her decision on h. Of course, because the report is released

after period 0, irrespective of the action taken by the DM, for any 0-period history h1,

there must exist some other PoAs, p1 and q1, for which flexibility is strictly beneficial

(after h1).

1.6 Proofs Regarding the Construction of Plans of Action.

Lemma 1. There exists a homeomorphism, λ : QÑ ∆BpAˆKpX ˆQqq such that

margAˆKpXˆQn´1q
pλpqqq “ qn. (3)

Proof. [Step 1: Extension Theorem.]

Let Cn “
 

pq0, . . . qnq P
śn

k“0Qk|qk “ Fk`1pqk`1q, @k “ 1 . . . n ´ 1
(

, and Tn “

KpX ˆ Cnq for n ě 0. Let T ˚ “
ś8

n“0 Tn and T “
 

t P T ˚|pprojTntn`1 “ tn
(

. Let

Y0 “ ∆BpAq and for n ě 1 let Yn “ ∆BpAˆT0ˆ . . .ˆTnqq. We say the the sequence of

probability measures tνn P Ynuně0 is consistent if margA...Tn´1
νn`1 “ νn for all n ě 0.

Let Y c denote the set of all consistent sequences. Then we know by Brandenburger

and Dekel (1993), for every tνnu P Y
c there exists a unique ν P ∆BpAˆ T ˚q such that

margAν “ ν0 and margA...Tnν “ νn. Moreover, the map ψ : Y c Ñ ∆BpAˆ T ˚q:

ψ : tνnu ÞÑ ν

is a homeomorphism. ˝

[Step 2: Extending Backwards.]

Let Dn “
 

pt0, . . . tnq P ˆ
n
n“0Tn|tk “ projTnptk`1q, @k “ 1 . . . n ´ 1

(

. Let Y d “
 

tνnu P Y
c|νnpA ˆDnq “ 1, @n ě 0

(

. We will now show, for each q P Q, there exists

13



a unique tνnu P Y
d, such that ν0 “ q0 and margAˆKpXˆQn´1q

pmargAˆTn´1
pνnqq “ qn

for all n ě 1. Indeed, let m0, m1 be the identify function on A and A ˆ KpX ˆ Q0q,

respectively. Then for each n ě 2 let mn : AˆDn´1 Ñ AˆKpX ˆQn´1q as follows:

mn`1 : pa, tx0, q00u, tx
1, q10, q

1
1u . . . tx

n, qn0 . . . q
n
nu

n
q ÞÑ pa, txn, qnnuq.

Note: for n ě 0, each mn is a Borel isomorphism. Indeed, continuity of mn is obvi-

ous, and measurability follows immediately from the fact that canonical projections

are measurable in the product σ-algebra. It is clear that mn is surjective, and —since

(given Fk for k P 1 . . . n) qn uniquely determines q0 . . . qn´1, which, (given the projec-

tion mappings) uniquely determines T0 . . . Tn´1— mi is also injective. As for, m´1
n ,

continuity follows from the continuity of Fk for k P 1 . . . n and the projection map-

pings. Lastly, measurability of m´1
n comes from the fact that a continuous injective

Borel function is a Borel isomorphism (see Kechris (2012) corollary 15.2).

So, let ψ : QÑ Y d as the map

φ : q ÞÑ tEn ÞÑ qnpmnpEnqquně0,

for any En P BpA ˆ T0 ˆ . . . ˆ Tnq. The continuity of φ and φ´1 follow from the fact

that they are constructed from the pushforward measures of m´1
n and mn, respectively,

which are themselves continuous (or, explicitly, see GP lemma 4).

Finally, let Γn “ A ˆ Dn ˆ
8
k“n`1 Tk. Let ν “ ψptνnuq for some tνnu in Y d. Then

νpΓnq “ νpA ˆ Dnq “ 1. So, νpA ˆ T q “ νpXně0Γnq “ lim νpΓnq “ 1. Also, note, if

νpA ˆ T q “ 1, then νpΓnq “ 1 for all n ě 0. So, ν P Y d if and only if νpA ˆ T q “ 1,

i.e., if, ψpY dq “
 

ν P ∆BpAˆ T ˚q|νpAˆ T q “ 1
(

. ˝

[Step 3: Extending Forwards.]

Let τ denote the map from AˆKpX ˆQq Ñ Aˆ T as

τ :
`

a, tx, qu
˘

ÞÑ
`

a, ptx, q0u, tx, q0, q1u, . . .q
˘

That τ it is a bijection follows from the consistency conditions on Q, T , and Cn for n ě

1. Now takes some measurable set E Ď T . Then τ´1pEq “
Ş

ně0

 

tx, q0, . . . qn ˆk“n81
Qku P KpX ˆQ˚q

(

, the countable intersection of measurable sets, and hence measur-

able. That τ and τ´1 are continuous is immediate. Therefore, by the same argument

14



as in [Step 2], τ is a Borel isomorphism and κ : ∆B
`

Aˆ T
˘

Ñ ∆B
`

AˆKpX ˆQq
˘

,

κ : ν ÞÑ
`

E ÞÑ νpτpEqq
˘

for all E in ∆B
`

AˆKpX ˆQq
˘

. Clearly, margApκpνqq “ margApνq and

margAˆKpXˆQn´1q
pκpνqq “ margAˆKpXˆQn´1q

pmargAˆTn´1
pνqq

for all n ě 1.

˝

Behold, λ “ κ ˝ ψ ˝ φ is the desired homeomorphism. �

Proof of Proposition 1. We show that λ is a homeomorphism between R and

∆BpA b Rq. Identify ∆BpA b Rq with
 

ν P ∆BpA ˆ KpX ˆ Qqq|νpA b Rq “ 1
(

.

Let r P R. For each n ě 0 let Γrn “ tpa, tx, quq P A b Q|qk P Rk, k “ 0 . . . nu.

Then λprqpΓrnq “ margAˆKpXˆQnqpλprqqpAbRnq “ rn`1pAbRnq “ 1 for all n ě 1. So

λprqpAbRq “ λprqpXně0Γ
r
nq “ limλprqpΓrnq “ 1. Now, fix q P Q with λpqqpAbRq “ 1,

then qnpAbRn´1q “ margAˆKpXˆQn´1q
pλpqqqpAbRn´1q “ λprqpΓrnq ě λprqpAbRq “ 1

for all n ě 0 and so q P R. �

Definition. Set W,W ‹ : PpRq Ñ PpRq as the functions:

W : E ÞÑ tr1 P R|r1 P Impfq for some pa, fq P supppλprqq, r P Eu and,

W ‹ : E ÞÑ
ď

ně0

W n
pEq

Where W n is W pW p. . .W pEq . . .qq with n applications of W .

Definition. Let P0 “ ∆pAq and recursively, Pn “ tpn P Rn|pn P ∆pA b Pn´1qu. Set

P “
 

p P
ś8

n“0 Pn|λpW
‹prqq Ď ∆pAbRq

(

.

Proof of Theorem 2. We show that λ is a homeomorphism between P and

∆pAbP q. First note, by construction, for all r P R, λprq P ∆BpAbW prqq. Let p P P ;

by the conditions on P , λppq P ∆pA b Rq. Therefore, it suffices to show that for any

p P P , and r P W ppq, r P P . So fix some r P W ppq. It follows from an analogous

argument to Corollary 1 that r P
ś8

n“0 Pn. Finally, note that W ‹prq Ď W ‹pW prqq. �

15



1.7 Proofs Regarding the SEE Representation.

Lemma 2. If ěh satisfies vNM and IT, then ěh satisfies the sure thing principal:

A8. (STP). For all a P A and f, f 1, g, g1 : X Ñ P , such that, for all x P X, either (i)

fpxq “ f 1pxq and gpxq “ g1pxq or (ii) fpxq “ gpxq and f 1pxq “ g1pxq. Then,

pa, fq ěh pa, gq ðñ pa, f 1q ěh pa, g
1
q.

Proof. Assume this was not true and, without loss of generality, that pa, fq ěh pa, gq

but pa, g1q ąh pa, f
1q. Now notice, when mixtures are taken point-wise, 1

2
f ` 1

2
g1 “

1
2
g ` 1

2
f 1. Therefore,

`1

2
pa, fq `

1

2
pa, g1q

˘

ąh

`1

2
pa, gq `

1

2
pa, f 1q

˘

„h pa,
1

2
g `

1

2
f 1q “ pa,

1

2
f `

1

2
g1q

„h
`1

2
pa, fq `

1

2
pa, g1q

˘

,

where the first line follows from vNM, and the indifference conditions from IT. This

is a contradiction. �

Lemma 3. If ěh satisfies vNM and IT for all h P H, then, if h
A
„ h1 then ěh“ěh1.

Proof. We will show the claim on induction by the length of the history. So let h, h1 P

Hp1q such that h
A
„ h1. Therefore, h “ pp, pa, fq, xq and h1 “ pp1, pa, gq, xq. Notice,

by definition we have, p “ αpa, fq ` p1 ´ αqr and p1 “ α1pa, gq ` p1 ´ α1qr1, for some

α, α1 P p0, 1s and r, r1 P P .

Let q, q1 P P ; we want to show that q ěh q
1 ðñ q ěh1 q

1. So let q ěh q
1, or by

definition, p´hq ě p´hq
1, which by the above observation is equivalent to

αpa, fq´ppa,fq,pa,fq,xqq ` p1´ αqr ě αpa, fq´ppa,fq,pa,fq,xqq ` p1´ αqr.

By independence (i.e., vNM) this is if and only if pa, fq´ppa,fq,pa,fq,xqq ě pa, fq´ppa,fq,pa,fq,xqq
1,

which by STP is if and only if pa, gq´ppa,gq,pa,gq,xqq ě pa, gq´ppa,gq,pa,gq,xqq
1. Using inde-

pendence again, this is if and only if p1´h1q ě p1´h1q
1. This completes the base case.

So assume the claim holds for all histories of length n. So let h, h1 P Hpn ` 1q

such that h
A
„ h1. Therefore, h “ phn, p, pa, fq, xq and h1 “ ph1n, p

1, pa, gq, xq, for some

hn, h
1
n P Hpnq such that hn

A
„ h1n. By the inductive hypothesis ěhn“ěh1n .
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Let q, q1 P P , and q ěh q1, or by definition, p´pp,pa,fq,xqq ěhn p´pp,pa,fq,xqq
1. By

independence and the sure thing principle this is if and only if pa, gq´ppa,gq,pa,gq,xqq ěhn

pa, gq´ppa,gq,pa,gq,xqq
1, which by independence again (and the equivalence of ěhn and ěh1n),

is if and only if p1
´pp1,pa,gq,xqq ěh1n p

1
´pp1,pa,gq,xqq

1. �

Proof of Theorem 3. [Step 0: Value Function.] Since ěh satisfies vNM, there

exists a vh : Ab P Ñ R such that

Uhppq “ Ep
“

vhpa, fq
‰

(4)

represents ěh, with vh unique un to affine translations. ˝

[Step 1: Recursive structure.] To obtain the skeleton of the representation, lets

consider ě̂, the restriction of ě to Σ (i.e., using the natural association between streams

of lotteries and degenerate trees). The relation ě̂ satisfies vNM (it is continuous by

the closure of Σ in P ). Hence there is a linear and continuous representation: i.e., an

index û : X ˆ Σ Ñ R such that:

Ûpσq “ Eσ
“

ûpx, ρq
‰

(5)

unique upto affine translations.

Following Gul and Pesendorfer (2004), (henceforth GP), fix some px1, ρ1q P Σ. From

SEP we have Ûp1
2
px, ρq ` 1

2
px1, ρ1qq “ Ûp1

2
px, ρ1q ` 1

2
px1, ρqq, and hence, ûpx, ρq “

ûpx, ρ1q`ûpx1, ρq´ûpx1, ρ1q. Then setting upxq “ ûpx, ρ1q´ûpx1, ρ1q and W pρq “ ûpx1, ρq,

we have,

Ûpσq “ Eσ
“

upxq `W pρq
‰

(6)

Now, consider p1 “ px1, ρq. Notice that p1 has unique 1-period history: h “ pp1, p1, x1q.

By NT, h cannot be null. So, by SST, ě̂h “ ě̂. This implies, of course thatW “ δÛ`β

for some δ ą 0 and β P R. Following Step 3 of Lemma 9 in GP exactly, we see that

δ ă 1 and without loss of generality we can set β “ 0:

Ûpσq “ Eσ
“

upxq ` δÛpρq
‰

(7)

Both representing ě̂ and being unique up to affine translations, we can normalize each
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Uh to coincide with Û over Σ. ˝

[Step 2: The existence of subjective probabilities.] For each a P A consider

Fpaq “ ab Σ

i.e., the elements of P̂ that begin with action a and from period 2 onwards are in

Σ. Associate Fpaq with the set of “acts”: f : Sa Ñ Σ, in the natural way. For any

acts f, g let f´xg denote the act that coincides with f for all x1 P Sa, x
1 ‰ x, and

coincides with g after x. For each h P H, and acts f, g P Fpaq, say f 9ěh,a g if and only

if pa, fq ěh pa, gq.

It is immediate that 9ěh,a is a continuous weak order (where, as before, continuity

follows from the closure of F in P ). Further, 9ěh,a satisfies independence. Indeed: fix

f, g, h P Fpaq with f 9ěh,a g. Then

f 9ěh,a g ùñ pa, fq ěh pa, gq

ùñ αpa, fq ` p1´ αqpa, hq ěh αpa, gq ` p1´ αqpa, hq

ùñ pa, αf ` p1´ αqhq ěh pa, αg ` p1´ αqhq

ùñ αf ` p1´ αqh 9ěh,a αg ` p1´ αqh,

where the third line uses IT. Lastly, 9ěh,a satisfies monotonicity, a direct consequence

of SST and STP. Hence, we have state-independence which gives us the full set of

Anscombe and Aumann (1963) axioms for an SEU representation of 9ěh,a with state

space Sa. That is, a belief µh,a P ∆pSaq and a utility index from Σ Ñ R (which is of

course, Û , and so will be denoted as such), such that

V̂h,apfq “ Eµh,a
“

Ûpfpxqq
‰

(8)

represents 9ěh,a. ˝

[Step 3: Proportional Actions.] Now, fix some h P H and consider an arbitrary

pa, fq P A b P . Let ρ P Σ be such that margXρ “ µh,a. We claim, pa, fq and ρ are

h-proportional. Fix some g, g1 : X Ñ Σ. From (8), we know

pa, gq ěh pa, g
1
q ðñ Eµh,a

“

Ûpgpxqq
‰

ě Eµh,a
“

Ûpg1pxqq
‰

(9)
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From (7) we have

Ûpρ.gq “ Eρ
“

upxq ` δÛpgpxqq
‰

“ EmargXρ

“

upxq ` δÛpgpxqq
‰

“ Eµh,a
“

upxq
‰

` δ Eµh,a
“

Ûpgpxqq
‰

In corresponding fashion we obtain the analogous representation for Ûpρ.g1q, and hence

ρ.g ěh ρ.g
1
ðñ Eµh,a

“

Ûpgpxqq
‰

ě Eµh,a
“

Ûpg1pxqq
‰

(10)

Combining the implications of (9) and (10), we see that pa, fq and ρ are h-proportional.

˝

[Step 4: Proportional Plans.] We now claim that for any h P H and p P P there

exists some σ P Σ such that p „h σ. Fix some p P P , and for each n P N define pn

to be any PoA that agrees with p on the first n periods, then provides elements of

Σ unambiguously. Note that pn Ñ p point-wise and hence converges in the product

topology. Therefore, the claim reduces to finding a convergent sequence tσnunPN Ă Σ

such that σn „h p
n, as continuity ensures the limits are indifferent.

We will prove the subsidiary claim by induction. Consider p1, for each pa, fq P

supprp1s, note, by assumption, f : X Ñ Σ. Let τ 1,pa,fq P Σ be such that margXτ
1,pa,fq “

µh,a. By [Step 3], pa, fq and τ 1,pa,fq are h-proportional. And thus, τ 1,pa,fq.f „h

pa, fq.f “ pa, fq, by PRP. Let σ1 P Σ be such that σ1rEs “ p1rtpa, fq|τ 1,pa,fq.f P Eus.

Therefore,

Uhpp
1
q “ Ep1

“

vhpa, fq
‰

“ Ep1
“

Ûpτ 1,pa,fq.fq
‰

“ Eσ1

“

Ûpρq
‰

“ Ûpσ1
q

where the third line comes from the change of variables formula for pushforward mea-

sures. This completes the base case.

Now, assume the claim hold for all h and m ď n ´ 1 for some n P N. Consider

pn. Note that for all h1 of the form hpxq “ ph, pn, pa, fq, xq, the implied continuation

problem pnph1q satisfies the inductive hypothesis. Therefore, there exists a σn´1,h
1

„h1
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pph1q for all such h1.

Let ‹ denote the mapping: pa, fq ÞÑ pa, fq‹ “ pa, x ÞÑ σn´1,hpa,xqq, where hpa, xq “

ph, pn, pa, fq, xq. By construction, for each pa, fq in suppppnq, and x P Sa we have

pa, fq „h pa, f´xσ
n´1,hpa,xqq (using the notation from [Step 2]). Employing STP we

have pa, fq „h pa, fq
‹ (i.e., enumerating the outcomes in Sa and changing f one entry

at a time, where STP ensures that each iteration is indifferent to the last).

Let p̂n P P be such that p̂nrEs “ pnrtpa, fq|pa, fq‹ P Eus. So,

Uhpp
n
q “ Epn

“

vhpa, fq
‰

“ Epn
“

vhppa, fq
‹
q
‰

“ Ep̂n
“

vhpb, gq
‰

“ Uhpp̂
n
q

Applying the base case to p̂n concludes the inductive step. Notice also, the convergence

of tσnunPN is easily verified, following the fact that the marginals on pn are fixed for

any σm with m ě n. ˝

[Step 5: Representation.] Consider any pa, fq P AbP . We claim that there exists

an pa, f 1q P Fpaq such that pa, fq „h pa, f
1q. Indeed, by [Step 4], for any x P Sa, there

exists some ρpa, xq such that ρpa, xq „hpa,xq fpxq, where hpa, xq “ ph, pa, fq, pa, fq, xq.

Define f 1 P Fpaq as x ÞÑ ρpa, xq. It follows from STP that pa, fq „h pa, f
1q.

We know by [Step 3] that there exists a ρ P Σ, h-proportional to pa, fq, with

margXρ “ µh,a. Hence pa, gq “ pa, fq.g „h ρ.g for all g : X Ñ Σ. We have,

vhpa, gq “ Ûpρ.gq

“ Eµh,a
“

upxq ` δÛpgpxqq
‰

,

and so, for pa, f 1q:

vhpa, f
1
q “ Eµh,a

“

upxq ` δÛpρpa, xqq
‰

.

By the indifference condition ρpa, xq „hpa,xq fpxq,

vhpa, fq “ Eµh,a
“

upxq ` δUhpa,xqpfpxqq
‰

. (11)

Notice, hpa, xq
A
„ h1pa, xq “ ph, p, pa, fq, xq, so by Lemma 3, ěhpa,xq“ěh1pa,xq. Applying
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this fact, and plugging (11) into (4) provides

Uhppq “ Ep
“

Eµh,a
“

upxq ` δUh1pa,xqpfpxqq
‰‰

(12)

as desired. ˝

�

Proof of Theorem 4. Let tµh,auhPH,aPA be an SEE structure for ě that satisfies

AA-SYM. Let tζTuTPT be the associated family of observable processes. Fix T and

some n period history h P T. Let, pa1, x1q . . . pan, xnq, where for each i ď n let ai is

such that Ti “ Sai and xi is the ith component of h. This represents an A-equivalence

class of decision theoretic histories. In out standard abuse of notation, let h also denote

this class of histories. Following this abuse, when it is not confusing to do so, let πh

denote both the permuted statistical history and the A-equivalence class represented

by paπp1q, xπp1qq . . . paπpnq, xπpnqq.

Fix some n-permutation π. Let p denote the PoA that assigns ai in the ith period

with certainty. Let p1 be the π-permutation of p. We have

α “ ζTphq “ µH,a1px1q ¨ µpa1,x1q,a2px2q ¨ ¨ ¨µpa1,x1,...,an´1,xn´1q,anpxn.

Let σ, σ1 P Σ be such that Uhpσq “ 1 and Uhpσ
1q “ 0. Then, by (SEE) we have

p´npασ ` p1´ αqσ
1
q „ pp´nσ

1
q´hσ

so, by AA-SYM, we have,

p1´npασ ` p1´ αqσ
1
q „ pp1´nσ

1
q´h1σ

which implies, again by (SEE),

α “ µH,aπp1qpxπp1qq¨µpaπp1q,xπp1qq,aπp2qpxπp2qq ¨ ¨ ¨µpaπp1q,xπp1q,...,aπpn´1q,xπpn´1qq,aπpnqpxπpnqq “ ζπTpπhq.

Hence, ζTphq “ ζπTpπhq as desired. �
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